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A schematic of fxyz orbitals in δ Pu
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Outline

• Computational and scientific goals

• Methodology

→ Density functional theory (DFT)

→ Dynamical mean-field theory (DMFT)

→ Continuous time QMC approach (CTQMC)

• DFT+DMFT computed properties of δ Pu

• Future work

• Conclusion
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Anomalous Properties of Pu
• Scientific objectives

→ Absence of magnetism

→ Volume collapse

→ Role of alloying

• Electronic properties

→ Spectra

→ Heat capacity

→ Magnetic susceptibility

→ Fermi surface

→ Resistivity

DMFT is positioned to meet this challenge
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General Methods

• Density functional theory (DFT)

→ Realistic systems

→ Ground state properties

• Dynamical mean-field theory (DMFT)

→ Model Hamiltonians

→ Captures physics of Mott transition

→ Ground/excited state properties

⇒ Γ[ρ]

⇒ Γ[G]

⇒ Γ[ρ, G]Merge approaches ⇒ DFT+DMFT



Chemistry •Materials • Earth • Life Sciences

DFT+DMFT for Pu
• DMFT too expensive to apply to all electrons

→ Even for Blue Gene!

• Only apply DMFT to most correlated electrons

→ f -electrons in Pu.

→ Apply DFT to the remaining electrons.

• Double-counting problem

→ Implication: number of f -electrons not accurately predicted.

→ Comparison with experiment must determine f -electron count

Nearly first-principles approach to strongly correlated materials
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DMFT: what is it?

• DMFT maps lattice many-body problem to Anderson
impurity model (AIM).

• AIM has 1 site of lattice embedded in bath of fictitious
electrons which mimic removed lattice sites.

• Characteristics of fictitious electrons determined by
DMFT self-consistency condition.

• AIM may be solved accurately using computation.
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Solving Anderson impurity model
• Quantum Monte-Carlo may be used to exactly solve AIM

→ Computational cost increases as temperature decreases

• Traditional Hirsch-Fye QMC method has limitations

→ Difficult to reach ambient temperatures

→ Cannot exactly treat on-site exchange

• Continuous time QMC (CTQMC) does not have these limitations

→ CTQMC stochastically sums the Feynman diagrams of the AIM.

→ CTQMC may be applied starting from the band limit or the atomic limit

Computation can provide the exact solution to the AIM!



Chemistry •Materials • Earth • Life Sciences

CTQMC: band limit vs. atomic limit
U = 0 vs. Vk = 0

• Is Pu closer to atomic limit or band limit?

• Will one technique have convergence problems?

• Atomic limit performs significantly better.

→ Much better statistics per unit time.

• Why???

→ Obvious how to truncate basis in atomic limit.

→ Pu is actually closer to atomic-limit than band limit.
CTQMC atomic limit is preferential for Pu
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Computational Objectives

• Approximation-free DMFT

• Ambient temperatures and below

• Non-trivial structures

→ More than one atom per unit cell

• Measure various observables
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Atlas

Computational Requirements

• QMC is rate limiting step of DFT+DMFT

→ Parallelizes nearly perfectly

→ More time ⇒ more progress

• Average run ≈ 20k CPU-hours

→ 1 atom/cell

→ scales linearly with # of atoms

→≈ 40k CPU-hours for T = 240K

• Self-consistency in density

→ factor of 10 increase?
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Results for δ Pu
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DFT

DMFT

• Performed first approximation-free DMFT

→ Including full exchange interaction

• Calculated various properties

→ Quasiparticle weight → Magnetic susceptibility

→ Heat capacity → Spectra
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Quasiparticle Weight Z = 1
m∗
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J=0.0• Z is inverse of eff ective mass

→ Z=1 ⇒ no correlations

→ Z=0 ⇒ electrons localize

• Pu is closer to atomic limit

• Electrons become heavier as
volume increases

• Including exchange substantially
increases correlations.

Pu is strongly correlated



Chemistry •Materials • Earth • Life Sciences

Linear Coefficient of Heat Capacity
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• Low temperature heat capacity
sensitive to correlations.

• Strongly depends on volume.

• Experiments find 35 − 65 mJ
molK2

→ Huge expt. variation

• Cause of discrepancy:

→ Density self-consistency

→ number of f electrons

→ Inaccurate experiments?
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Magnetic Susceptibility χ
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• First calculation of χ in Pu

• Pauli behavior ⇒ itinerant
electrons

• Curie behavior ⇒ localized
electrons

• Predict Pauli behavior for Veq

→ Agrees with experiments

→ Explains lack of magnetism

• Expanded lattice agrees with
PuH2.

We have observed quantum decoherence in Pu
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Photoemission spectra
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DFT

DMFT

• Density of electronic states
versus energy.

• DMFT renormalizes DFT
spectrum

→ Transfer of weight from Fermi
energy to Hubbard bands

• Exchange causes further
renormalization of spectrum.

Exchange has notable eff ect on spectra
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Future Work

• Compute electronic properties of α Pu

→ 16 atoms per unit cell

• Compute total energy as a function of volume for δ Pu

→ Clearly elucidate volume collapse

• Compute negative thermal expansion

• Make corresponding predictions for Pu alloys.

→ Am, Ga, vacancies

→ Show why alloying equates to pressure
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Computational and Scientific Impact

• First approximation-free exact DMFT calculation of Pu

→ Impossible without the power of Atlas

• Pu is shown to be a strongly correlated Fermi liquid

→ The moments in Pu are screened

→ DFT+DMFT is a pivotal tool for understanding strong
correlated systems

• The use of massive parallel computation is critical to
understanding the elusive properties of Pu.
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Presentations / Publications
• Invited talk APS 2008 - UCRL-ABS-236899

→ Dynamical mean-field theory calculations of materials properties
using the continuous time quantum Monte-Carlo method

• Invited talk Pu Futures 2008 - LLNL-ABS-401407

→ Electronic coherence in δ Pu: A DMFT study

• Contributed talk MRS 2008 - UCRL-ABS-236117

→ Electronic properties of Pu via the dynamical-mean field theory

• Contribute talk APS 2008 - UCRL-ABS-236889

→ Effects of full Coulomb interactions on electronic structure of
delta-Pu

• Publication in preparation


